A numerical framework to understand transitions in high-dimensional stochastic dynamical systems
نویسندگان
چکیده
منابع مشابه
Routes to chaos in high-dimensional dynamical systems: A qualitative numerical study
This paper examines the most probable route to chaos in high-dimensional dynamical systems function space (time-delay neural networks) endowed with a probability measure in a computational setting . The most probable route to chaos (relative to the measure we impose on the function space) as the dimension is increased is observed to be a sequence of Neimark-Sacker bifurcations into chaos. The a...
متن کاملDynamical phase transitions in one-dimensional hard-particle systems.
We analyze a one-dimensional model of hard particles, within ensembles of trajectories that are conditioned (or biased) to atypical values of the time-averaged dynamical activity. We analyze two phenomena that are associated with these large deviations of the activity: phase separation (at low activity) and the formation of hyperuniform states (at high activity). We consider a version of the mo...
متن کاملChaos in high-dimensional dissipative dynamical systems
For dissipative dynamical systems described by a system of ordinary differential equations, we address the question of how the probability of chaotic dynamics increases with the dimensionality of the phase space. We find that for a system of d globally coupled ODE's with quadratic and cubic non-linearities with randomly chosen coefficients and initial conditions, the probability of a trajectory...
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Dynamics and Statistics of the Climate System
سال: 2016
ISSN: 2059-6987
DOI: 10.1093/climsys/dzw003